A PDE method for estimation of implied volatility
Ivan Matić,
Radoš Radoičić and
Dan Stefanica
Quantitative Finance, 2020, vol. 20, issue 3, 393-408
Abstract:
In this paper it is proved that the Black–Scholes implied volatility satisfies a second order non-linear partial differential equation. The obtained PDE is then used to construct an algorithm for fast and accurate polynomial approximation for Black–Scholes implied volatility that improves on the existing numerical schemes from literature, both in speed and parallelizability. We also show that the method is applicable to other problems, such as approximation of implied Bachelier volatility.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1675898 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:3:p:393-408
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1675898
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().