Random matrix models for datasets with fixed time horizons
G. L. Zitelli
Quantitative Finance, 2020, vol. 20, issue 5, 769-781
Abstract:
This paper examines the use of random matrix theory as it has been applied to model large financial datasets, especially for the purpose of estimating the bias inherent in Mean-Variance portfolio allocation when a sample covariance matrix is substituted for the true underlying covariance. Such problems were observed and modeled in the seminal work of Laloux et al. [Noise dressing of financial correlation matrices. Phys. Rev. Lett., 1999, 83, 1467] and rigorously proved by Bai et al. [Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory. Math. Finance, 2009, 19, 639–667] under minimal assumptions. If the returns on assets to be held in the portfolio are assumed independent and stationary, then these results are universal in that they do not depend on the precise distribution of returns. This universality has been somewhat misrepresented in the literature, however, as asymptotic results require that an arbitrarily long time horizon be available before such predictions necessarily become accurate. In order to reconcile these models with the highly non-Gaussian returns observed in real financial data, a new ensemble of random rectangular matrices is introduced, modeled on the observations of independent Lévy processes over a fixed time horizon.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1711962 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:5:p:769-781
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1711962
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().