Pricing high-dimensional American options by kernel ridge regression
Wenbin Hu and
Tomasz Zastawniak
Quantitative Finance, 2020, vol. 20, issue 5, 851-865
Abstract:
In this paper, we propose using kernel ridge regression (KRR) to avoid the step of selecting basis functions for regression-based approaches in pricing high-dimensional American options by simulation. Our contribution is threefold. Firstly, we systematically introduce the main idea and theory of KRR and apply it to American option pricing for the first time. Secondly, we show how to use KRR with the Gaussian kernel in the regression-later method and give the computationally efficient formulas for estimating the continuation values and the Greeks. Thirdly, we propose to accelerate and improve the accuracy of KRR by performing local regression based on the bundling technique. The numerical test results show that our method is robust and has both higher accuracy and efficiency than the Least Squares Monte Carlo method in pricing high-dimensional American options.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1713393 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:5:p:851-865
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1713393
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().