The implied Sharpe ratio
Ankush Agarwal and
Matthew Lorig
Quantitative Finance, 2020, vol. 20, issue 6, 1009-1026
Abstract:
In an incomplete market, including liquidly traded European options in an investment portfolio could potentially improve the expected terminal utility for a risk-averse investor. However, unlike the Sharpe ratio, which provides a concise measure of the relative investment attractiveness of different underlying risky assets, there is no such measure available to help investors choose among the different European options. We introduce a new concept—the implied Sharpe ratio—which allows investors to make such a comparison in an incomplete financial market. Specifically, when comparing various European options, it is the option with the highest implied Sharpe ratio that, if included in an investor's portfolio, will improve his expected utility the most. Through the method of Taylor series expansion of the state-dependent coefficients in a nonlinear partial differential equation, we also establish the behaviour of the implied Sharpe ratio with respect to an investor's risk-aversion parameter. In a series of numerical studies, we compare the investment attractiveness of different European options by studying their implied Sharpe ratio.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1718194 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:6:p:1009-1026
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1718194
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().