Noise fit, estimation error and a Sharpe information criterion
Dirk Paulsen and
Jakob Söhl
Quantitative Finance, 2020, vol. 20, issue 6, 1027-1043
Abstract:
When the in-sample Sharpe ratio is obtained by optimizing over a k-dimensional parameter space, it is a biased estimator for what can be expected on unseen data (out-of-sample). We derive (1) an unbiased estimator adjusting for both sources of bias: noise fit and estimation error. We then show (2) how to use the adjusted Sharpe ratio as model selection criterion analogously to the Akaike Information Criterion (AIC). Selecting a model with the highest adjusted Sharpe ratio selects the model with the highest estimated out-of-sample Sharpe ratio in the same way as selection by AIC does for the log-likelihood as a measure of fit.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1718746 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:6:p:1027-1043
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1718746
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().