Optimizing a portfolio of mean-reverting assets with transaction costs via a feedforward neural network
John M. Mulvey,
Yifan Sun,
Mengdi Wang and
Jing Ye
Quantitative Finance, 2020, vol. 20, issue 8, 1239-1261
Abstract:
Optimizing a portfolio of mean-reverting assets under transaction costs and a finite horizon is severely constrained by the curse of high dimensionality. To overcome the exponential barrier, we develop an efficient, scalable algorithm by employing a feedforward neural network. A novel concept is to apply HJB equations as an advanced start for the neural network. Empirical tests with several practical examples, including a portfolio of 48 correlated pair trades over 50 time steps, show the advantages of the approach in a high-dimensional setting. We conjecture that other financial optimization problems are amenable to similar approaches.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1729994 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:8:p:1239-1261
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1729994
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().