Quantitative statistical robustness for tail-dependent law invariant risk measures
Wei Wang,
Huifu Xu and
Tiejun Ma
Quantitative Finance, 2021, vol. 21, issue 10, 1669-1685
Abstract:
When estimating the risk of a financial position with empirical data or Monte Carlo simulations via a tail-dependent law invariant risk measure such as the Conditional Value-at-Risk (CVaR), it is important to ensure the robustness of the plug-in estimator particularly when the data contain noise. Krätschmer et al. [Comparative and qualitative robustness for law invariant risk measures. Financ. Stoch., 2014, 18, 271–295.] propose a new framework to examine the qualitative robustness of such estimators for the tail-dependent law invariant risk measures on Orlicz spaces, which is a step further from an earlier work by Cont et al. [Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance, 2010, 10, 593–606] for studying the robustness of risk measurement procedures. In this paper, we follow this stream of research to propose a quantitative approach for verifying the statistical robustness of tail-dependent law invariant risk measures. A distinct feature of our approach is that we use the Fortet–Mourier metric to quantify variation of the true underlying probability measure in the analysis of the discrepancy between the law of the plug-in estimator of the risk measure based on the true data and the one based on perturbed data. This approach enables us to derive an explicit error bound for the discrepancy when the risk functional is Lipschitz continuous over a class of admissible sets. Moreover, the newly introduced notion of Lipschitz continuity allows us to examine the degree of robustness for tail-dependent risk measures. Finally, we apply our quantitative approach to some well-known risk measures to illustrate our results and give an example of the tightness of the proposed error bound.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1892171 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:10:p:1669-1685
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1892171
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().