EconPapers    
Economics at your fingertips  
 

Optimal investment strategy in the family of 4/2 stochastic volatility models

Yuyang Cheng and Marcos Escobar-Anel
Authors registered in the RePEc Author Service: Marcos Escobar Anel ()

Quantitative Finance, 2021, vol. 21, issue 10, 1723-1751

Abstract: This paper derives optimal investment strategies for the 4/2 stochastic volatility model proposed in [Grasselli, M., The 4/2 stochastic volatility model: a unified approach for the Heston and the 3/2 model. Math. Finance, 2017, 27(4), 1013–1034] and the embedded 3/2 model [Heston, S.L., A simple new formula for options with stochastic volatility. 1997]. We maximize the expected utility of terminal wealth for a constant relative risk aversion (CRRA) investor, solving the corresponding Hamilton–Jacobi–Bellman (HJB) equations in closed form for both complete and incomplete markets. Conditions for the verification theorems are provided. Interestingly, the optimal investment strategy displays a very intuitive dependence on current volatility levels, a trend which has not been previously reported in the literature of stochastic volatility models. A full empirical analysis comparing four popular embedded models—i.e. the Merton (geometric Brownian motion), Heston (1/2), 3/2 and 4/2 models—is conducted using S&P 500 and VIX data. We find that the 1/2 model carries the larger weight in explaining the 4/2 behaviour, and optimal investments in the 1/2 and 4/2 models are similar, while investments in the 3/2 model are the most conservative in high-variance settings (20% of Merton's solution). Despite the similarities between the 1/2 and 4/2 models, wealth-equivalent losses due to deviations from the 4/2 model are largest for the1/2 and GBM models (40% over 10 years). Meanwhile, the wealth losses due to market incompleteness are harsher for the 1/2 model than for the 4/2 and 3/2 models (60% versus 40% and 30% respectively), highlighting the benefits of choosing the 4/2 or the 3/2 over the 1/2 model.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1901971 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:10:p:1723-1751

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2021.1901971

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:quantf:v:21:y:2021:i:10:p:1723-1751