Structural breaks in Box-Cox transforms of realized volatility: a model selection perspective
Simon Behrendt
Quantitative Finance, 2021, vol. 21, issue 11, 1905-1919
Abstract:
Autoregressive (AR) models such as the heterogeneous autoregressive (HAR) model capture the linear footprint inherent in realized volatility. We draw upon the fact that the HAR model is a constrained AR model and cast the problem of estimating structural breaks in the autoregressive volatility dynamics as a model selection problem. A two-step Lasso-type procedure is used to consistently estimate the unknown number and timing of structural breaks. Empirically, we find the number of breaks to be heavily influenced by Box-Cox transformations applied to realized volatility series of eight stock market indices: For example, while we find breaks in the original series, no breaks are found in log-realized volatility, a measure often used in applied research, across a wide range of lag lengths. These Box-Cox transformations lead to different volatility processes with distinct autoregressive dynamics and affect the estimation of structural breaks. Importantly, the log-transformation considerably reduces the number of price jumps which might otherwise be selected as structural breaks.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1914855 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:11:p:1905-1919
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1914855
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().