A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics
Len Patrick Dominic M. Garces and
Gerald H. L. Cheang
Quantitative Finance, 2021, vol. 21, issue 12, 2025-2054
Abstract:
We consider a method of lines (MOL) approach to determine prices of European and American exchange options when underlying asset prices are modeled with stochastic volatility and jump-diffusion dynamics. As with any other numerical scheme for partial differential equations (PDEs), the MOL becomes increasingly complex when higher dimensions are involved, so we first simplify the problem by transforming the exchange option into a call option written on the ratio of the yield processes of the two assets. This is achieved by taking the second asset yield process as the numéraire. Under the equivalent martingale measure induced by this change of numéraire, we derive the exchange option pricing integro-partial differential equations (IPDEs) and investigate the early exercise boundary of the American exchange option. We then discuss a numerical solution of the IPDEs using the MOL, its implementation using computing software and possible alternative boundary conditions at the far limits of the computational domain. Our analytical and numerical investigation shows that the near-maturity behavior of the early exercise boundary of the American exchange option is significantly influenced by the dividend yields and the presence of jumps in the underlying asset prices. Furthermore, with the numerical results generated by the MOL, we are able to show that key jump and stochastic volatility parameters significantly affect the early exercise boundary and exchange option prices. Our numerical analysis also verifies that the MOL performs more efficiently, than other finite difference methods or simulation approaches for American options, since the MOL integrates the computation of option prices, greeks and the early exercise boundary, and does so with the least error.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1926534 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:12:p:2025-2054
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1926534
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().