Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
R. Giacometti,
G. Torri and
Sandra Paterlini
Quantitative Finance, 2021, vol. 21, issue 2, 243-261
Abstract:
Accurate estimation and optimal control of tail risk is important for building portfolios with desirable properties, especially when dealing with a large set of assets. In this work, we consider optimal asset allocation strategies based on the minimization of two asymmetric deviation measures, related to quantile and expectile regression, respectively. Their properties are discussed in relation with the ‘risk quadrangle’ framework introduced by Rockafellar and Uryasev [The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci., 2013, 18(1–2), 33–53], and compared to traditional strategies, such as the mean–variance portfolio. In order to control estimation error and improve the out-of-sample performance of the proposed models, we include ridge and elastic-net regularization penalties. Finally, we propose quadratic programming formulations for the optimization problems. Simulations and real-world analyses on multiple datasets allow to discuss pros and cons of the different methods. The results show that the ridge and elastic-net allocations are effective in improving the out-of-sample performance, especially in large portfolios, compared to the un-penalized ones.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1820072 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:2:p:243-261
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1820072
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().