EconPapers    
Economics at your fingertips  
 

A cost-effective approach to portfolio construction with range-based risk measures

Chi Seng Pun and Lei Wang

Quantitative Finance, 2021, vol. 21, issue 3, 431-447

Abstract: In this paper, we introduce a new class of risk measures and the corresponding risk minimizing portfolio optimization problem. Instead of measuring the expected deviation of a daily return from a single target value, we propose to measure its deviation from a range of values centered on the single target value. By relaxing the definition of deviation, the proposed risk measure is robust to the variation of data input and thus the resulting risk-minimizing portfolio has a lower turnover rate and is resilient to outliers. To construct a practical portfolio, we propose to impose an $\ell _2 $ℓ2-norm constraint on the portfolio weights to stabilize the portfolio's out-of-sample performance. We show that for some cases of our proposed range-based risk measures, the corresponding portfolio optimization can be recast as a support vector regression problem. This allows us to tap into the machine learning literature on support vector regression and effectively solve the portfolio optimization problem even in high dimensions. Moreover, we present theoretical results on the robustness of our range-based risk minimizing portfolios. Simulation and empirical studies are conducted to examine the out-of-sample performance of the proposed portfolios.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1781237 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:3:p:431-447

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1781237

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:21:y:2021:i:3:p:431-447