EconPapers    
Economics at your fingertips  
 

A Markov chain approximation scheme for option pricing under skew diffusions

Kailin Ding, Zhenyu Cui and Yongjin Wang

Quantitative Finance, 2021, vol. 21, issue 3, 461-480

Abstract: In this paper, we propose a general valuation framework for option pricing problems related to skew diffusions based on a continuous-time Markov chain approximation to the underlying stochastic process. We obtain an explicit closed-form approximation of the transition density of a general skew diffusion process, which facilitates the unified valuation of various financial contracts written on assets with natural boundary behavior, e.g. in the foreign exchange market with target zones, and equity markets with psychological barriers. Applications include valuation of European call and put options, barrier and Bermudan options, and zero-coupon bonds. Motivated by the presence of psychological barriers in the market volatility, we also propose a novel ‘skew stochastic volatility’ model, in which the latent stochastic variance follows a skew diffusion process. Numerical results demonstrate that our approach is accurate and efficient, and recovers various benchmark results in the literature in a unified fashion.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1781235 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:3:p:461-480

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1781235

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:21:y:2021:i:3:p:461-480