EconPapers    
Economics at your fingertips  
 

Mean-variance portfolio selection with non-negative state-dependent risk aversion

Tianxiao Wang, Zhuo Jin and Jiaqin Wei

Quantitative Finance, 2021, vol. 21, issue 4, 657-671

Abstract: In this paper, we study the open-loop equilibrium strategy for mean-variance portfolio selection problem under the assumption that the risk tolerance of the investor is a non-negative and non-linear function of his/her wealth. We derive a sufficient and necessary condition for the existence and uniqueness of an open-loop equilibrium strategy via a coupled forward-backward stochastic differential equation. To the best of our knowledge, such an equation appears for the first time in the literature. The well-posedness of this equation is established by merely imposing Lipschitz condition on the risk tolerance. We also present two examples with non-monotone risk tolerances, where some interesting findings are revealed and the equilibrium strategies are obtained explicitly and numerically.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1787492 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:4:p:657-671

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1787492

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:21:y:2021:i:4:p:657-671