EconPapers    
Economics at your fingertips  
 

Efficient computation of mean reverting portfolios using cyclical coordinate descent

Théophile Griveau-Billion and B. Calderhead

Quantitative Finance, 2021, vol. 21, issue 4, 673-684

Abstract: The econometric challenge of finding sparse mean reverting portfolios based on a subset of a large number of assets is well known. Many current state-of-the-art approaches fall into the field of co-integration theory, where the problem is phrased in terms of an eigenvector problem with sparsity constraint. Although a number of approximate solutions have been proposed to solve this NP-hard problem, all are based on relatively simple models and are limited in their scalability. In this paper, we leverage information obtained from a heterogeneous simultaneous graphical dynamic linear model (H-SGDLM) and propose a novel formulation of the mean reversion problem, which is phrased in terms of a quasi-convex minimisation with a normalisation constraint. This new formulation allows us to employ a cyclical coordinate descent algorithm for efficiently computing an exact sparse solution, even in a large universe of assets, while the use of H-SGDLM data allows us to easily control the required level of sparsity. We demonstrate the flexibility, speed and scalability of the proposed approach on S&P500, FX and ETF futures data.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1803497 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Efficient computation of mean reverting portfolios using cyclical coordinate descent (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:4:p:673-684

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1803497

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:quantf:v:21:y:2021:i:4:p:673-684