Efficient computation of mean reverting portfolios using cyclical coordinate descent
Théophile Griveau-Billion and
B. Calderhead
Quantitative Finance, 2021, vol. 21, issue 4, 673-684
Abstract:
The econometric challenge of finding sparse mean reverting portfolios based on a subset of a large number of assets is well known. Many current state-of-the-art approaches fall into the field of co-integration theory, where the problem is phrased in terms of an eigenvector problem with sparsity constraint. Although a number of approximate solutions have been proposed to solve this NP-hard problem, all are based on relatively simple models and are limited in their scalability. In this paper, we leverage information obtained from a heterogeneous simultaneous graphical dynamic linear model (H-SGDLM) and propose a novel formulation of the mean reversion problem, which is phrased in terms of a quasi-convex minimisation with a normalisation constraint. This new formulation allows us to employ a cyclical coordinate descent algorithm for efficiently computing an exact sparse solution, even in a large universe of assets, while the use of H-SGDLM data allows us to easily control the required level of sparsity. We demonstrate the flexibility, speed and scalability of the proposed approach on S&P500, FX and ETF futures data.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1803497 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Efficient computation of mean reverting portfolios using cyclical coordinate descent (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:4:p:673-684
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1803497
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().