EconPapers    
Economics at your fingertips  
 

Uncertainty shocks of Trump election in an interval model of stock market

Yuying Sun, Kenan Qiao and Shouyang Wang

Quantitative Finance, 2021, vol. 21, issue 5, 865-879

Abstract: This paper proposes a new class of nonlinear interval models for interval-valued time series. By matching the interval model with interval observations, we develop a nonlinear minimum-distance estimation method for the proposed models, and establish the asymptotic theory for the proposed estimators. Superior to traditional point-based methods, the proposed interval modelling approach can assess the change in both the trend and volatility simultaneously. Within the proposed interval framework, this paper examines the impact of the 2016 US presidential election (henceforth Trump election) on the US stock market as a case study. Considering the validity of daily high-low range as a proxy of market efficiency, we employ an interval-valued return to jointly measure the fundamental value movement and market efficiency simultaneously. Empirical results suggest a strong evidence that the Trump election has increased the level/trend and lowered the volatility of the S&P 500 index in both ex ante and ex post analysis. Furthermore, a longer half-life period for the impact on fundamental value (62.4 days) than high-low range (15.9 days) has shown that the impact of Trump's victory on fundamental value is more persistent than its impact on market efficiency.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1800070 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:5:p:865-879

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1800070

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:21:y:2021:i:5:p:865-879