Optimal portfolio allocation and asset centrality revisited
Jose Olmo
Quantitative Finance, 2021, vol. 21, issue 9, 1475-1490
Abstract:
This paper revisits the relationship between eigenvector asset centrality and optimal asset allocation in a minimum variance portfolio. We show that the standard definition of eigenvector centrality is misleading when the adjacency matrix in a network can take negative values. This is, for example, the case when the network topology is induced by the correlation matrix between assets in a portfolio. To correct for this, we introduce the concept of positive and negative eigenvector centrality. Our results show that the loss function associated to the minimum variance portfolio is positively/negatively related to the positive and negative eigenvector centrality under short-selling constraints but cannot be generalized beyond that. Furthermore, in contrast to what is claimed in the related literature, this relationship does not imply any monotonic relationship between the centrality of an asset and its optimal portfolio allocation. These theoretical insights are illustrated empirically in a portfolio allocation exercise with assets from U.S. and U.K. financial markets.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1937298 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:9:p:1475-1490
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1937298
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().