The effects of errors in means, variances, and correlations on the mean-variance framework
Munki Chung,
Yongjae Lee,
Jang Ho Kim,
Woo Chang Kim and
Frank J. Fabozzi
Quantitative Finance, 2022, vol. 22, issue 10, 1893-1903
Abstract:
The mean-variance (MV) framework has been a fundamental tenet of investment management, yet it has been criticized for being too sensitive to parameter estimation errors. Hence, it is important to understand how the errors in parameters affect the MV framework. Although a number of researchers have studied how errors in parameters affect MV optimal portfolios, these studies do not show the complete picture. The MV framework is a tool for systematic evaluation of investment alternatives based on the risk-return trade-off, and MV optimal portfolios are its outputs. In this study, we investigate the effect of errors in parameters on the entire MV framework. We analyze the Sharpe ratio distribution of all possible portfolios, which represents how investments are evaluated under the risk-return trade-off. While means have been widely considered as the most important parameter in the MV optimization, our full-distributional analyses reveal that correlations mostly dominate other parameters.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2083009 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:10:p:1893-1903
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2022.2083009
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().