EconPapers    
Economics at your fingertips  
 

Cooperation between independent market makers

Bingyan Han

Quantitative Finance, 2022, vol. 22, issue 11, 2005-2019

Abstract: With the digitalization of the financial market, dealers are increasingly handling market-making activities by algorithms. Recent antitrust literature raises concerns on collusion caused by artificial intelligence. This paper studies the possibility of cooperation between market makers via independent Q-learning. with inventory risk is formulated as a repeated general-sum game. Under a stag-hunt type payoff, we find that market makers can learn cooperative strategies without communication. In general, high spreads can have the largest probability even when the lowest spread is the unique Nash equilibrium. Moreover, introducing more agents into the game does not necessarily eliminate the presence of supra-competitive spreads.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2097943 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:11:p:2005-2019

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2022.2097943

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:22:y:2022:i:11:p:2005-2019