Cooperation between independent market makers
Bingyan Han
Quantitative Finance, 2022, vol. 22, issue 11, 2005-2019
Abstract:
With the digitalization of the financial market, dealers are increasingly handling market-making activities by algorithms. Recent antitrust literature raises concerns on collusion caused by artificial intelligence. This paper studies the possibility of cooperation between market makers via independent Q-learning. with inventory risk is formulated as a repeated general-sum game. Under a stag-hunt type payoff, we find that market makers can learn cooperative strategies without communication. In general, high spreads can have the largest probability even when the lowest spread is the unique Nash equilibrium. Moreover, introducing more agents into the game does not necessarily eliminate the presence of supra-competitive spreads.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2097943 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:11:p:2005-2019
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2022.2097943
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().