EconPapers    
Economics at your fingertips  
 

Forecasting interval-valued crude oil prices using asymmetric interval models

Quanying Lu, Yuying Sun, Yongmiao Hong and Shouyang Wang

Quantitative Finance, 2022, vol. 22, issue 11, 2047-2061

Abstract: Practitioners and policy makers rely on accurate crude oil forecasting to avoid price risks and grasp investment opportunities, but the core of existing predictive models for such prices is based on point-valued inputs and outputs, which may suffer from informational loss of volatility. This paper addresses this issue by proposing a modified threshold autoregressive interval-valued models with interval-valued factors (MTARIX), as extended by Sun et al. [Threshold autoregressive models for interval-valued time series. J. Econom., 2018, 206, 414–446], to analyze and forecast interval-valued crude oil prices. In contrast to point-valued data methods, MTARIX models simultaneously capture nonlinear features in price trend and volatility, and this informational gain can produce more accurate forecasts. Several interval-valued factors and point-valued threshold variables are analyzed, including supply and demand, speculation, stock market, monetary market, technical factor, and search query data. Empirical results suggest that MTARIX models with appropriate threshold variables outperform other competing forecast models (ACIX, CR-SETARX, ARX, and VARX). The findings indicate that oil price range information is more valuable than oil price level information in forecasting crude oil prices.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2112065 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:11:p:2047-2061

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2022.2112065

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:quantf:v:22:y:2022:i:11:p:2047-2061