Myopic robust index tracking with Bregman divergence
S. Penev,
P. V. Shevchenko and
W. Wu
Quantitative Finance, 2022, vol. 22, issue 2, 289-302
Abstract:
Index tracking is a popular form of asset management. Typically, a quadratic function is used to define the tracking error of a portfolio and the look back approach is applied to solve the index tracking problem. We argue that a forward looking approach is more suitable, whereby the tracking error is expressed as an expectation of a function of the difference between the returns of the index and of the portfolio. We also assume that there is model uncertainty in the distribution of the assets, hence a robust version of the optimization problem needs to be adopted. We use Bregman divergence in describing the deviation between the nominal and actual (true) distribution of the components of the index. In this scenario, we derive the optimal robust index tracking portfolio in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented that allow us to compare the performance of this robust portfolio with the optimal non-robust portfolio. We show that, especially during market downturns, the robust portfolio can be very advantageous.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1950918 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:2:p:289-302
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1950918
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().