Constructing long-short stock portfolio with a new listwise learn-to-rank algorithm
Xin Zhang,
Lan Wu and
Zhixue Chen
Quantitative Finance, 2022, vol. 22, issue 2, 321-331
Abstract:
Factor strategies have gained growing popularity in industry with the fast development of machine learning. Usually, multi-factors are fed to an algorithm for some cross-sectional return predictions, which are then further used to construct a long-short portfolio. Instead of predicting the value of the stock return, emerging studies predict a ranked stock list using the mature learn-to-rank technology. In this study, we propose a new listwise learn-to-rank loss function which aims to emphasize both the top and the bottom of a rank list. Our loss function, motivated by the long-short strategy, is endogenously shift-invariant and can be viewed as a direct generalization of ListMLE. Under different transformation functions, our loss can lead to consistency with binary classification loss or permutation level 0-1 loss. A probabilistic explanation for our model is also given as a generalized Plackett-Luce model. Based on a dataset of 68 factors in the China A-share market from 2006 to 2019, our empirical study has demonstrated the strength of our method which achieves an out-of-sample annual return of 38% with Sharpe ratio 2.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1939117 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:2:p:321-331
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1939117
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().