Portfolio optimization with a prescribed terminal wealth distribution
Ivan Guo,
Nicolas Langrené,
Grégoire Loeper and
Wei Ning
Quantitative Finance, 2022, vol. 22, issue 2, 333-347
Abstract:
This paper studies a portfolio allocation problem, where the goal is to reach a prescribed wealth distribution at a final time. We study this problem with the tools of optimal mass transport. We provide a dual formulation which is solved with a gradient descent algorithm. This involves solving an associated Hamilton–Jacobi–Bellman and Fokker–Planck equations with a finite difference method. Numerical examples for various prescribed terminal distributions are given, showing that we can successfully reach attainable targets. We then consider adding consumption during the investment process, to take into account distributions that are either not attainable, or sub-optimal.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1967432 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:2:p:333-347
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1967432
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().