EconPapers    
Economics at your fingertips  
 

JDOI variance reduction method and the pricing of American-style options

Johan Auster, Ludovic Mathys and Fabio Maeder

Quantitative Finance, 2022, vol. 22, issue 4, 639-656

Abstract: This article revisits the Diffusion Operator Integral (DOI) variance reduction technique originally proposed in Heath and Platen (2002) and extends its theoretical concept to the pricing of American-style options under (time-homogeneous) Lévy stochastic differential equations. The resulting Jump Diffusion Operator Integral (JDOI) method can be combined with numerous Monte Carlo-based stopping-time algorithms, including the ubiquitous least-squares Monte Carlo (LSMC) algorithm of Longstaff and Schwartz (cf. Carriere (1996) and Longstaff and Schwartz (2001)). We exemplify the usefulness of our theoretical derivations under a concrete, though very general jump-diffusion stochastic volatility dynamics and test the resulting LSMC-based version of the JDOI method. The results provide evidence of a strong variance reduction when compared with a simple application of the LSMC algorithm and proves that applying our technique on top of Monte Carlo-based pricing schemes provides a powerful way to speed-up these methods.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1962959 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:4:p:639-656

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2021.1962959

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:22:y:2022:i:4:p:639-656