Are missing values important for earnings forecasts? A machine learning perspective
Ajim Uddin,
Xinyuan Tao,
Chia-Ching Chou and
Dantong Yu
Quantitative Finance, 2022, vol. 22, issue 6, 1113-1132
Abstract:
Analysts' forecasts are one of the most common and important estimators for firms' future earnings. However, they are challenging to fully utilize because of missing values. This study applies machine learning techniques to estimate missing values in individual analysts' forecasts and subsequently to predict firms' future earnings based on both estimated and observed forecasts. After estimating missing values, forecast error is reduced by 41% compared to the mean forecast, suggesting that missing values after estimating are indeed useful for earnings forecasts. We analyze multiple estimation methods and show that the out-performance of matrix factorization (MF) is consistent using different evaluation measures and across firms. Finally, we propose a stochastic gradient descent based coupled matrix factorization (CMF) to augment the estimation quality of missing values with multiple datasets. CMF further reduces the error of earnings forecasts by 19% compared to MF with a single dataset.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2021.1963825 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:6:p:1113-1132
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2021.1963825
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().