EconPapers    
Economics at your fingertips  
 

The reinforcement learning Kelly strategy

R. Jiang, D. Saunders and C. Weng

Quantitative Finance, 2022, vol. 22, issue 8, 1445-1464

Abstract: The full Kelly portfolio strategy's deficiency in the face of estimation errors in practice can be mitigated by fractional or shrinkage Kelly strategies. This paper provides an alternative, the RL Kelly strategy, based on a reinforcement learning (RL) framework. RL algorithms are developed for the practical implementation of the RL Kelly strategy. Extensive simulation studies are conducted, and the results confirm the superior performance of the RL Kelly strategies.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2049356 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:8:p:1445-1464

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2022.2049356

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:22:y:2022:i:8:p:1445-1464