Multivariate systemic risk measures and computation by deep learning algorithms
A. Doldi,
Y. Feng,
J.-P. Fouque and
M. Frittelli
Quantitative Finance, 2023, vol. 23, issue 10, 1431-1444
Abstract:
In this work, we propose deep learning-based algorithms for the computation of systemic shortfall risk measures defined via multivariate utility functions. We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations. The algorithms we provide allow for learning primal optimizers, optima for the dual representation and corresponding fair risk allocations. We test our algorithms by comparison to a benchmark model, based on a paired exponential utility function, for which we can provide explicit formulas. We also show evidence of convergence in a case in which explicit formulas are not available.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2231505 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:10:p:1431-1444
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2231505
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().