f-Betas and portfolio optimization with f-divergence induced risk measures
Rui Ding
Quantitative Finance, 2023, vol. 23, issue 10, 1483-1496
Abstract:
In this paper, we build on using the class of f-divergence induced coherent risk measures for portfolio optimization and derive its necessary optimality conditions formulated in CAPM format. We derive a new f-Beta similar to the Standard Betas and also extended it to previous works in Drawdown Betas. The f-Beta evaluates portfolio performance under an optimally perturbed market probability measure, and this family of Beta metrics gives various degrees of flexibility and interpretability. We conduct numerical experiments using selected stocks against a chosen S&P 500 market index as the optimal portfolio to demonstrate the new perspectives provided by Hellinger-Beta as compared with Standard Beta and Drawdown Betas. In our experiments, the squared Hellinger distance is chosen to be the particular choice of the f-divergence function in the f-divergence induced risk measures and f-Betas. We calculate Hellinger-Beta metrics based on deviation measures and further extend this approach to calculate Hellinger-Betas based on drawdown measures, resulting in another new metric which is termed Hellinger-Drawdown Beta. We compare the resulting Hellinger-Beta values under various choices of the risk aversion parameter to study their sensitivity to increasing stress levels.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2230629 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:10:p:1483-1496
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2230629
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().