Bayesian nonparametric portfolio selection with rolling maximum drawdown control
Xiaoling Mei,
Yachong Wang and
Weixuan Zhu
Quantitative Finance, 2023, vol. 23, issue 10, 1497-1510
Abstract:
We present a novel approach to the portfolio selection problem for a multiperiod investor facing multiple risky assets, trading constraints, and return predictability. Our objective is to maximize mean-variance utility while addressing the computational challenges arising from the curse of dimensionality associated with dynamic programming in the presence of trading constraints. To overcome this, we employ model predictive control, a computationally efficient method for solving the problem. Additionally, we propose the use of a non-parametric Bayesian model, specifically the hierarchical Dirichlet process based Hidden Markov Model (HDP-HMM), to predict the multiperiod mean and covariance of returns. Then, we consider a time-varying maximum drawdown to adjust the risk aversion, which can effectively cope with the limit loss problems. Through extensive simulation studies and empirical analysis, we demonstrate that trading strategies based on our proposed method outperform existing approaches in out-of-sample performance.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2250386 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:10:p:1497-1510
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2250386
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().