Can volatility solve the naive portfolio puzzle?
Michael Curran,
Patrick O'Sullivan and
Ryan Zalla
Quantitative Finance, 2023, vol. 23, issue 11, 1545-1560
Abstract:
We investigate whether sophisticated volatility estimation improves the out-of-sample performance of mean-variance portfolio strategies relative to the naive 1/N strategy. The portfolio strategies rely solely upon second moments. Using a diverse group of portfolios and econometric models across multiple datasets, most models achieve higher Sharpe ratios and lower portfolio volatility that are statistically and economically significant relative to the naive rule, even after controlling for turnover costs. Our results suggest benefits to employing more sophisticated econometric models than the sample covariance matrix, and that mean-variance strategies often outperform the naive portfolio across multiple datasets and assessment criteria.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2249996 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:11:p:1545-1560
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2249996
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().