EconPapers    
Economics at your fingertips  
 

Effective stochastic local volatility models

M. Felpel, J. Kienitz and T.A. McWalter

Quantitative Finance, 2023, vol. 23, issue 12, 1731-1750

Abstract: If a high degree of accuracy and market consistency is required for option pricing, stochastic local volatility models are often the approach of choice. When calibrating these types of models, one of the major challenges lies in the proper fitting of the leverage function. This often requires an optimization procedure in terms of computationally intensive numerical methods, such as Monte Carlo simulation, or methods not well suited to local volatility formulations, such as Fourier transform pricing. In this article, we provide an alternative approach using an effective stochastic volatility technique, which provides an efficient semi-analytical approximation of the PDE for the density function of the underlying. This approach allows efficient direct calibration of the leverage function for a large class of stochastic local volatility models, which includes stochastic volatility models such as the SABR, ZABR or Heston model as the underlying base model. We provide calibration and computational schemes and illustrate our approach using numerical experiments.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2271514 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:12:p:1731-1750

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2023.2271514

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:23:y:2023:i:12:p:1731-1750