Principled pasting: attaching tails to risk-neutral probability density functions recovered from option prices
Thomas R. Bollinger,
William R. Melick and
Charles Thomas
Quantitative Finance, 2023, vol. 23, issue 12, 1751-1768
Abstract:
The popular ‘curve-fitting’ method of using option prices to construct an underlying asset's risk neutral probability density function (RND) first recovers the interior of the density and then attaches left and right tails. Typically, the tails are constructed so that values of the RND and risk neutral cumulative distribution function (RNCDF) from the interior and the tails match at the attachment points. We propose and demonstrate the feasibility of also requiring that the left and right tails accurately price the options with strikes at the attachment points. Our methodology produces a RND that provides superior pricing performance than earlier curve-fitting methods for both those options used in the construction of the RND and those that were not. We also demonstrate that Put-Call Parity complicates the classification of in and out of sample options.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2272677 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:12:p:1751-1768
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2272677
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().