Improving the asymmetric stochastic volatility model with ex-post volatility: the identification of the asymmetry
Zehua Zhang and
Ran Zhao
Quantitative Finance, 2023, vol. 23, issue 1, 35-51
Abstract:
Simulation studies show that the asymmetry stochastic volatility (ASV) models may infer erroneous correlation coefficients, due to their predetermined return-volatility specification. We propose identifying the correlation parameter by incorporating the ex-post volatility in the ASV framework. We obtain a significantly smaller magnitude in the estimated correlation coefficients between equity and volatility processes among major U.S. equity market indexes. Out-of-sample index return distribution forecasts demonstrate superior performance when jointly estimating the return and the ex-post volatility processes. The corrected return-volatility correlations by estimating proposed ASV models with subsample data further document the time-varying leverage effect.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2140700 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:1:p:35-51
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2022.2140700
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().