A semi-parametric conditional autoregressive joint value-at-risk and expected shortfall modeling framework incorporating realized measures
Chao Wang,
Richard Gerlach and
Qian Chen
Quantitative Finance, 2023, vol. 23, issue 2, 309-334
Abstract:
A class of realized semi-parametric conditional autoregressive joint Value-at-Risk (VaR) and Expected Shortfall (ES) models is proposed. This class includes novel specifications that allow separate dynamics for VaR and ES, driven by realized measures of volatility. A measurement equation is included in the model class for risk modeling, meaning it generalizes the parametric Realized-GARCH model into the semi-parametric realm. The proposed models implicitly allow the conditional return distribution to change over time via the relationship between VaR and ES. Employing a quasi-likelihood built on the asymmetric Laplace distribution, a Bayesian Markov Chain Monte Carlo method is used for model estimation, whose finite sample properties are assessed via simulation. In a forecasting study applied to 7 indices and 7 assets, one-day-ahead 1% and 2.5% VaR and ES forecasting results support the proposed model class.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2157322 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:2:p:309-334
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2022.2157322
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().