W-shaped implied volatility curves and the Gaussian mixture model
Paul Glasserman and
Dan Pirjol
Quantitative Finance, 2023, vol. 23, issue 4, 557-577
Abstract:
The number of crossings of the implied volatility function with a fixed level is bounded above by the number of crossings of the risk-neutral density with the density of a log-normal distribution with the same mean as the forward price. It is bounded below by the number of convex payoffs priced equally by the two densities. We discuss the implications of these bounds for the implied volatility in the N-component Gaussian mixture model, with particular attention to the possibility of W-shaped smiles. We show that the implied volatility in this model crosses any level at most $ 2(N-1) $ 2(N−1) times. We show that a bimodal density need not produce a W-shaped smile, and a unimodal density can produce an oscillatory smile. We give monotonicity properties of the implied volatility in Gaussian mixtures under stochastic orderings of the location parameters and volatilities of the mixture components. For some of these results we make use of a novel convexity property of the Black-Scholes price at one strike with respect to the price at another strike. The combined constraints from density crossings and extreme strike asymptotics restrict the allowed shapes of the implied volatility. As an application we discuss a symmetric N = 3 Gaussian mixture model which generates three possible smile shapes: U-shaped, W-shaped and an oscillatory shape with two minima and two maxima.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2165448 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:4:p:557-577
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2165448
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().