EconPapers    
Economics at your fingertips  
 

Optimal asset allocation under search frictions and stochastic interest rate

Ning Wang, Song-Ping Zhu and Robert Elliott ()

Quantitative Finance, 2023, vol. 23, issue 6, 1019-1033

Abstract: In this paper, we investigate an optimal asset allocation problem in a financial market consisting of one risk-free asset, one liquid risky asset and one illiquid risky asset. The liquidity risk stems from the asset that cannot be traded continuously, and the trading opportunities are captured by a Poisson process with constant intensity. Also, it is assumed that the interest rate is stochastically varying and follows the Cox–Ingersoll–Ross model. The performance functional of the decision maker is selected as the expected logarithmic utility of the total wealth at terminal time. The dynamic programming principle coupled with the Hamilton–Jacobi–Bellman equation has been adopted to solve this stochastic optimal control problem. In order to reduce the dimension of the problem, we introduce the proportion of the wealth invested in the illiquid risky asset and derive the semi-analytical form of the value function using a separation principle. A finite difference method is employed to solve the controlled partial differential equation satisfied by a function which is an important component of the value function. The numerical examples and their economic interpretations are then discussed.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2199781 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:6:p:1019-1033

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2023.2199781

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:quantf:v:23:y:2023:i:6:p:1019-1033