Pairs trading with wavelet transform
Burak Alparslan Eroğlu,
Haluk Yener and
Taner Yigit
Quantitative Finance, 2023, vol. 23, issue 7-8, 1129-1154
Abstract:
We show that applying the wavelet transform to S&P 500 constituents' prices generates a substantial increase in the returns of the pairs-trading strategy. Pairs trading strategy is based on finding prices that move together, but if there is shared noise in the asset prices, the co-movement, on which one base the trades, might be caused by this common noise. We show that wavelet transform filters away the noise, leading to more profitable trades. The most notable change occurs in the parameter estimation stage, which forms the weights of the assets in the pairs portfolio. Without filtering, the parameters estimated in the training period lose relevance in the trading period. However, when prices are filtered from common noise, the parameters maintain relevance much longer and result in more profitable trades. Particularly, we show that more precise parameter estimation is reflected on a more stationary and conservative spread, meaning more mean reversion in opened pairs trades. We also show that wavelet filtering the prices reduces the downside risk of the trades considerably.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2230249 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:7-8:p:1129-1154
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2023.2230249
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().