EconPapers    
Economics at your fingertips  
 

On the optimal forecast with the fractional Brownian motion

Xiaohu Wang, Jun Yu and Chen Zhang

Quantitative Finance, 2024, vol. 24, issue 2, 337-346

Abstract: This paper investigates the performance of different forecasting formulas with fractional Brownian motion based on discrete and finite samples. Existing literature presents two formulas for generating optimal forecasts when continuous records are available. One formula relies on a history over an infinite past, while the other is designed for a record limited to a finite past. In reality, only observations at discrete time points over a finite past are available. In this case, the forecasting formula, which has been widely used in the literature, is the one obtained by Gatheral et al. (Volatility is rough. Quant. Finance, 2018, 18(6), 933–949) that truncates and discretizes the formula based on continuous records over an infinite past. The present paper advocates an alternative forecasting formula, which is the conditional expectation based on finite past discrete-time observations. The findings suggest that the conditional expectation approach produces more accurate forecasts than the existing method, as demonstrated by both simulated data and actual daily realized volatility (RV) observations. Moreover, we also provide empirical evidence showing that the conditional expectation approach can lead to larger economic values than the existing method.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2023.2297730 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: On the Optimal Forecast with the Fractional Brownian Motion (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:2:p:337-346

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2023.2297730

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:quantf:v:24:y:2024:i:2:p:337-346