Asymptotics for short maturity Asian options in jump-diffusion models with local volatility
Dan Pirjol and
Lingjiong Zhu
Quantitative Finance, 2024, vol. 24, issue 3-4, 433-449
Abstract:
We present a study of the short maturity asymptotics for Asian options in a jump-diffusion model with a local volatility component, where the jumps are modeled as a compound Poisson process. The analysis for out-of-the-money Asian options is extended to models with Lévy jumps, including the exponential Lévy model as a special case. Both fixed and floating strike Asian options are considered. Explicit results are obtained for the first-order asymptotics of the Asian options prices for a few popular models in the literature: the Merton jump-diffusion model, the double-exponential jump model, and the Variance Gamma model. We propose an analytical approximation for Asian option prices which satisfies the constraints from the short-maturity asymptotics, and test it against Monte Carlo simulations. The asymptotic results are in good agreement with numerical simulations for sufficiently small maturity.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2326114 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:3-4:p:433-449
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2024.2326114
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().