A modified CTGAN-plus-features-based method for optimal asset allocation
José-Manuel Peña,
Fernando Suárez,
Omar Larré,
Domingo Ramírez and
Arturo Cifuentes
Quantitative Finance, 2024, vol. 24, issue 3-4, 465-479
Abstract:
We propose a new approach to portfolio optimization that utilizes a unique combination of synthetic data generation and a CVaR-constraint. We formulate the portfolio optimization problem as an asset allocation problem in which each asset class is accessed through a passive (index) fund. The asset-class weights are determined by solving an optimization problem which includes a CVaR-constraint. The optimization is carried out by means of a Modified CTGAN algorithm which incorporates features (contextual information) and is used to generate synthetic return scenarios, which, in turn, are fed into the optimization engine. For contextual information, we rely on several points along the U.S. Treasury yield curve. The merits of this approach are demonstrated with an example based on 10 asset classes (covering stocks, bonds, and commodities) over a fourteen-and-half-year period (January 2008–June 2022). We also show that the synthetic generation process is able to capture well the key characteristics of the original data, and the optimization scheme results in portfolios that exhibit satisfactory out-of-sample performance. We also show that this approach outperforms the conventional equal-weights (1/N) asset allocation strategy and other optimization formulations based on historical data only.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2329194 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:3-4:p:465-479
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2024.2329194
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().