Deep learning for enhanced index tracking
Zhiwen Dai and
Lingfei Li
Quantitative Finance, 2024, vol. 24, issue 5, 569-591
Abstract:
We develop a novel deep learning method for the enhanced index tracking problem, which aims to outperform an index while effectively controlling the tracking error. We generate a dynamic trading policy from a neural network that accepts a set of features as inputs. We design four blocks in the neural network architecture to handle different types of features, including regimes of the index and stocks, their short-term characteristics, and the current allocation. Outputs from the blocks are integrated into the final output that changes the portfolio allocation. We test our model on several indexes in empirical studies based on real market data. Out-of-sample results reveal the importance of different features and demonstrate the ability of our method in obtaining excess returns while effectively controlling the tracking error, downside risk, and transaction costs.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2356239 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:5:p:569-591
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2024.2356239
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().