EconPapers    
Economics at your fingertips  
 

Dynamic partial (co)variance forecasting model

Zirong Chen and Yao Zhou

Quantitative Finance, 2024, vol. 24, issue 5, 643-653

Abstract: In this study, we propose a dynamic partial (co)variance forecasting model (DPCFM) by introducing a dynamic model averaging (DMA) approach into a partial (co)variance forecasting model. The dynamic partial (co)variance forecasting model considers the time-varying property of the model's parameters and optimal threshold combinations used to construct partial (co)variance. Our empirical results suggest that in both variance and covariance cases, the dynamic partial variance forecasting model can generate more accurate forecasts than an individual partial (co)variance forecasting model in both the statistical and economic sense. The superiority of the dynamic partial (co)variance forecasting model is robust to various forecast horizons.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2342896 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:5:p:643-653

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2024.2342896

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:24:y:2024:i:5:p:643-653