EconPapers    
Economics at your fingertips  
 

Neural network approach to portfolio optimization with leverage constraints: a case study on high inflation investment

Chendi Ni, Yuying Li and Peter Forsyth

Quantitative Finance, 2024, vol. 24, issue 6, 753-777

Abstract: Motivated by the current global high inflation scenario, we aim to discover a dynamic multi-period allocation strategy to optimally outperform a passive benchmark while adhering to a bounded leverage limit. We formulate an optimal control problem to outperform a benchmark portfolio throughout the investment horizon. To obtain strategies under the bounded leverage constraint among other realistic constraints, we propose a novel leverage-feasible neural network (LFNN) to represent the control, which converts the original constrained optimization problem into an unconstrained optimization problem that is computationally feasible with gradient descent, without dynamic programming. We establish mathematically that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original optimal control problem with bounded leverage. We further validate the performance of the LFNN empirically by deriving a closed-form solution under jump-diffusion asset price models and show that a shallow LFNN model achieves comparable results on synthetic data. In the case study, we apply the LFNN approach to a four-asset investment scenario with bootstrap-resampled asset returns from the filtered high inflation regimes. The LFNN strategy is shown to consistently outperform the passive benchmark strategy by about 200 bps (median annualized return), with a greater than 90% probability of outperforming the benchmark at the end of the investment horizon.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2357733 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:24:y:2024:i:6:p:753-777

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2024.2357733

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:24:y:2024:i:6:p:753-777