EconPapers    
Economics at your fingertips  
 

A market resilient data-driven approach to option pricing

Anindya Goswami and Nimit Rana

Quantitative Finance, 2025, vol. 25, issue 10, 1581-1597

Abstract: In this paper, we present a data-driven ensemble approach for option price prediction whose derivation is based on the no-arbitrage theory of option pricing. Using the theoretical treatment, we derive a common representation space for achieving domain adaptation. Through a specific scaling, suitable for financial time series data, we obtain a feature representation that is indistinguishable for samples coming from different domains. This provides an advantage over conventional models when predicting atypical out-of-sample test data. The success of an implementation of this idea is shown using some real market data. The root mean squared error in prediction turns out to be less than one-third of that for the benchmark model. We further report several experimental results for critically examining the predictive performance of the derived pricing models.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2025.2562161 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:25:y:2025:i:10:p:1581-1597

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2025.2562161

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-12-13
Handle: RePEc:taf:quantf:v:25:y:2025:i:10:p:1581-1597