EconPapers    
Economics at your fingertips  
 

Online learning of order flow and market impact with Bayesian change-point detection methods

Ioanna-Yvonni Tsaknaki, Fabrizio Lillo and Piero Mazzarisi

Quantitative Finance, 2025, vol. 25, issue 2, 307-322

Abstract: Financial order flow exhibits a remarkable level of persistence, wherein buy (sell) trades are often followed by subsequent buy (sell) trades over extended periods. This persistence can be attributed to the division and gradual execution of large orders. Consequently, distinct order flow regimes might emerge, which can be identified through suitable time series models applied to market data. In this paper, we propose the use of Bayesian online change-point detection (BOCPD) methods to identify regime shifts in real-time and enable online predictions of order flow and market impact. To enhance the effectiveness of our approach, we have developed a novel BOCPD method using a score-driven approach. This method accommodates temporal correlations and time-varying parameters within each regime. Through empirical application to NASDAQ data, we have found that: (i) Our newly proposed model demonstrates superior out-of-sample predictive performance compared to existing models that assume i.i.d. behavior within each regime; (ii) When examining the residuals, our model demonstrates good specification in terms of both distributional assumptions and temporal correlations; (iii) Within a given regime, the price dynamics exhibit a concave relationship with respect to time and volume, mirroring the characteristics of actual large orders; (iv) By incorporating regime information, our model produces more accurate online predictions of order flow and market impact compared to models that do not consider regimes.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2024.2337300 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:25:y:2025:i:2:p:307-322

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2024.2337300

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-03
Handle: RePEc:taf:quantf:v:25:y:2025:i:2:p:307-322