An early-warning risk signals framework to capture systematic risk in financial markets
Vito Ciciretti,
Monomita Nandy,
Alberto Pallotta,
Suman Lodh,
P. K. Senyo and
Jekaterina Kartasova
Quantitative Finance, 2025, vol. 25, issue 5, 757-771
Abstract:
Despite extensive research on the relationship between systematic risk and expected returns, there exists limited knowledge of how early-warning risk signals could capture investors’ expectations about changes in systematic risk. Leveraging on graph theory and covariance matrices, this study proposes a novel framework to develop risk signal patterns. Our approach not only discerns high-risk periods from calmer ones but also elucidates the pivotal role of interconnections among securities as indicators of systematic risk. The findings offer actionable insights for timely portfolio management and risk management responses in periods of transitions towards higher systematic risk. Moreover, by leveraging on graph theory, regulators can take timely decisions about how much liquidity to inject into the markets during periods of uncertainty. This study contributes to the literature by establishing a novel framework on linking investors’ expectations and expected changes in systematic risk.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2025.2482637 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:25:y:2025:i:5:p:757-771
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2025.2482637
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().