EconPapers    
Economics at your fingertips  
 

A methodological approach to the computational problems in the estimation of adjusted PIN model

Oguz Ersan and Montasser Ghachem

Quantitative Finance, 2025, vol. 25, issue 7, 1133-1145

Abstract: It is well documented that computational problems may lead to large biases in the estimation of probability of informed trading (PIN) models. The complexity of the AdjPIN model [Duarte, J. and Young, L., Why is PIN priced? J. Financ. Econ., 2009, 91, 119–138.], an extension of the conventional PIN model, exacerbates further these computational issues due to its larger parameter set. We introduce a dual approach to improve estimation reliability: a logarithmic factorization of the likelihood function and a strategic algorithm for generating initial parameter sets. The logarithmic factorization addresses floating point exceptions and numerical instability, while the algorithm significantly reduces the likelihood of converging to local maxima. We show that our methodology outperforms existing best practices and it enables accurate estimation of the AdjPIN model. We, therefore, strongly suggest its use in future studies.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2025.2515929 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:25:y:2025:i:7:p:1133-1145

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2025.2515929

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-09-05
Handle: RePEc:taf:quantf:v:25:y:2025:i:7:p:1133-1145