Recovery of volatility coefficient by linearization
Ilia Bouchouev,
Victor Isakov and
Nicolas Valdivia
Quantitative Finance, 2002, vol. 2, issue 4, 257-263
Abstract:
We study the problem of reconstruction of the asset price dependent local volatility from market prices of options with different strikes. For a general diffusion process we apply the linearization technique and we conclude that the option price can be obtained as the sum of the Black-Scholes formula and of an explicit functional which is linear in perturbation of volatility. We obtain an integral equation for this functional and we show that under some natural conditions it can be inverted for volatility. We demonstrate the stability of the linearized problem, and we propose a numerical algorithm which is accurate for volatility functions with different properties.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1088/1469-7688/2/4/302 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:2:y:2002:i:4:p:257-263
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1088/1469-7688/2/4/302
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().