Pricing of index options under a minimal market model with log-normal scaling
David Heath and
Eckhard Platen ()
Quantitative Finance, 2003, vol. 3, issue 6, 442-450
Abstract:
This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic timescale. The index is modelled using a time transformed squared Bessel process with a log-normal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. Here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with log-normal scaling produces the type of implied volatility term structures for European call and put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black-Scholes prices are examined.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/6/303 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:3:y:2003:i:6:p:442-450
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1088/1469-7688/3/6/303
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().