Non-parametric estimation of historical volatility
John Randal,
Peter Thomson and
Martin Lally
Quantitative Finance, 2004, vol. 4, issue 4, 427-440
Abstract:
Evolving volatility is a dominant feature observed in most financial time series and a key parameter used in option pricing and many other financial risk analyses. A number of methods for non-parametric scale estimation are reviewed and assessed with regard to the stylized features of financial time series. A new non-parametric procedure for estimating historical volatility is proposed based on local maximum likelihood estimation for the t-distribution. The performance of this procedure is assessed using simulated and real price data and is found to be the best among estimators we consider. We propose that it replaces the moving variance historical volatility estimator.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680400008692 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:4:y:2004:i:4:p:427-440
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680400008692
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().